Zero-Shot Learning via Category-Specific Visual-Semantic Mapping
نویسندگان
چکیده
Zero-Shot Learning (ZSL) aims to classify a test instance from an unseen category based on the training instances from seen categories, in which the gap between seen categories and unseen categories is generally bridged via visual-semantic mapping between the low-level visual feature space and the intermediate semantic space. However, the visual-semantic mapping (i.e., projection) learnt based on seen categories may not generalize well to unseen categories, which is known as the projection domain shift in ZSL. To address this projection domain shift issue, we propose a method named Adaptive Embedding ZSL (AEZSL) to learn an adaptive visual-semantic mapping for each unseen category, followed by progressive label refinement. Moreover, to avoid learning visual-semantic mapping for each unseen category in the large-scale classification task, we additionally propose a deep adaptive embedding model named Deep AEZSL (DAEZSL) sharing the similar idea (i.e., visual-semantic mapping should be category-specific and related to the semantic space) with AEZSL, which only needs to be trained once, but can be applied to arbitrary number of unseen categories. Extensive experiments demonstrate that our proposed methods achieve the state-of-theart results for image classification on three small-scale benchmark datasets and one large-scale benchmark dataset.
منابع مشابه
LONG, LIU, SHAO: ATTRIBUTE EMBEDDING WITH VSAR FOR ZERO-SHOT LEARNING 1 Attribute Embedding with Visual-Semantic Ambiguity Removal for Zero-shot Learning
Conventional zero-shot learning (ZSL) methods recognise an unseen instance by projecting its visual features to a semantic space that is shared by both seen and unseen categories. However, we observe that such a one-way paradigm suffers from the visualsemantic ambiguity problem. Namely, the semantic concepts (e.g. attributes) cannot explicitly correspond to visual patterns, and vice versa. Such...
متن کاملMulti-Task Zero-Shot Action Recognition with Prioritised Data Augmentation
Zero-Shot Learning (ZSL) promises to scale visual recognition by bypassing the conventional model training requirement of annotated examples for every category. This is achieved by establishing a mapping connecting low-level features and a semantic description of the label space, referred as visual-semantic mapping, on auxiliary data. Reusing the learned mapping to project target videos into an...
متن کاملZero-shot Recognition via Semantic Embeddings and Knowledge Graphs
We consider the problem of zero-shot recognition: learning a visual classifier for a category with zero training examples, just using the word embedding of the category and its relationship to other categories, which visual data are provided. The key to dealing with the unfamiliar or novel category is to transfer knowledge obtained from familiar classes to describe the unfamiliar class. In this...
متن کاملTransductive Multi-class and Multi-label Zero-shot Learning
Recently, zero-shot learning (ZSL) has received increasing interest. The key idea underpinning existing ZSL approaches is to exploit knowledge transfer via an intermediate-level semantic representation which is assumed to be shared between the auxiliary/source dataset and the target/test dataset and re-used as a bridge between the source and target domains for knowledge transfer. The semantic r...
متن کاملSemantic Softmax Loss for Zero-Shot Learning
A typical pipeline for Zero-Shot Learning (ZSL) is to integrate the visual features and the class semantic descriptors into a multimodal framework with a linear or bilinear model. However, the visual features and the class semantic descriptors locate in different structural spaces, a linear or bilinear model can not capture the semantic interactions between different modalities well. In this le...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1711.06167 شماره
صفحات -
تاریخ انتشار 2017